Abstract
Despite increasing metals and metalloids (MM) human-driven soil contamination, how it simultaneously alters biodiversity and ecosystem functioning remains unknown. We used a wide gradient of a 170-year-old MM soil multi-contamination in Mediterranean scrublands to assess the effects of soil multi-contamination on multiple plant biodiversity facets, microbial communities and ecosystem multifunctionality (EMF). We found an overall positive effect of plant biodiversity on EMF mediated by microbial communities, and allowing offsetting the negative impacts of MM soil multi-contamination, especially on soil water holding capacity and nitrogen content. The diversity of distant plant lineages was the key facet promoting EMF by enhancing microbial communities, whereas the subordinate species richness altered EMF. By developing a holistic approach of these complex relationships between soil multi-contamination, plant biodiversity, microbial communities and ecosystem functioning, our results reveal the potential of plant biodiversity, and especially the diversity of evolutionary distant species, to offset the alteration of ecosystem functioning by MM soil multi-contamination. In this worldwide decade of ecosystems restoration, our study helps to identify relevant facets of plant biodiversity promoting contaminated ecosystem functioning, which is crucial to guide and optimize management efforts aiming to restore ecosystems and preserve human health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.