Abstract

Microorganisms regulate numerous ecosystem functions and show considerable differences along a latitudinal gradient. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of ecosystem multifunctionality (EMF) and how microbial communities affect EMF along a latitudinal gradient remain unclear. Here, we collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. We also determined microbial diversity (taxonomic and functional) and microbial network complexity using metagenomic sequencing. The results showed that EMF significantly decreased with increasing latitude in riparian rhizosphere and bulk soils but not in channel sediments. Microbial taxonomic and functional richness (observed species) in channel sediments were significantly higher in the low-latitude group than in the high-latitude group. However, microbial co-occurrence networks were more complex in the high-latitude group compared with the low-latitude group. Abiotic factors, primarily geographic and climatic factors, contributed more to EMF than microbial diversity and network complexity parameters in which only betweenness centralization had a significant relationship with EMF. Together, this study provides insight into the latitudinal pattern of EMF in rivers and highlights the importance of large-scale factors in explaining such latitudinal patterns.IMPORTANCEEcosystem multifunctionality (EMF) is the capacity of an ecosystem to provide multiple functions simultaneously. Microorganisms, as dominant drivers of belowground processes, have a profound effect on ecosystem functions. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of EMF and how microbial communities affect EMF along a latitudinal gradient remain unclear. We collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers along a latitudinal gradient across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. This study fills a critical knowledge gap regarding the latitudinal patterns and drivers of EMF in river ecosystems and gives new insights into how microbial diversity and network complexity affect EMF from a metagenomic perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call