Abstract

The increasing use of high shares of renewable energy sources (RESs) in the current electricity network introduces challenges to the design and management of the electricity network due to the variation and uncertainty nature of the RESs. Some existing energy infrastructures, such as heat, gas, and transport, all have some level of inbuilt storage capacity and demand response (DR) potentials that can be exploited in an energy system integration to give the electricity network some level of flexibility and promote an efficient transition to a low-carbon, resilient, and robust energy system. The process of integrating different energy infrastructure is known as multi-vector energy systems (MESs). This paper reviews different studies on the planning of MESs using the energy hubs (EHs) approach. The EHs model used in this paper links different energy vectors such as gas, electricity, and heat energy vectors in its planning model, as opposed to planning each energy vector independently, in order to provide more flexibility in the system, minimise total planning cost, and encourage high penetration of renewable energy source for future energy demands. In addition, different uncertainty modelling and optimization methods that have been used in past studies in planning of EH are classified and reviewed to ascertain the appropriate techniques for addressing RESs uncertainty when planning future EH. Numerical results show 12% reduction in the planning cost in the case of integrated planning with other energy vectors compared to independent planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.