Abstract
This paper presents modeling frameworks for distributing development effort among software components to facilitate cost-effective progress toward a system reliability goal. Emphasis on components means that the frameworks can be used, for example, in cleanroom processes and to set certification criteria. The approach, based on reliability allocation, uses the operational profile to quantify the usage environment and a utilization matrix to link usage with system structure. Two approaches for reliability and cost planning are introduced: Reliability-Constrained Cost-Minimization (RCCM) and Budget-Constrained Reliability-Maximization (BCRM). Efficient solutions are presented corresponding to three general functions for measuring cost-to-attain failure intensity. One of the functions is shown to be a generalization of the basic COCOMO form. Planning within budget, adaptation for other cost functions and validation issues are also discussed. Analysis capabilities are illustrated using a software system consisting of 26 developed modules and one procured module. The example also illustrates how to specify a reliability certification level, and minimum purchase price, for the procured module.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.