Abstract

Mathematical models of viral transmission and control are important tools for assessing the threat posed by deliberate release of the smallpox virus and the best means of containing an outbreak. Models must balance biological realism against limitations of knowledge, and uncertainties need to be accurately communicated to policy-makers. Smallpox poses the particular challenge that key biological, social and spatial factors affecting disease spread in contemporary populations must be elucidated largely from historical studies undertaken before disease eradication in 1979. We review the use of models in smallpox planning within the broader epidemiological context set by recent outbreaks of both novel and re-emerging pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.