Abstract
An interesting class of planning domains, including planning for daily activities of Mars rovers, involves achievement of goals with time constraints and concurrent actions with probabilistic durations. Current probabilistic approaches, which rely on a discrete time model, introduce a blow up in the search state-space when the two factors of action concurrency and action duration uncertainty are combined. Simulation-based and sampling probabilistic planning approaches would cope with this state explosion by avoiding storing all the explored states in memory, but they remain approximate solution approaches. In this paper, we present an alternative approach relying on a continuous time model which avoids the state explosion caused by time stamping in the presence of action concurrency and action duration uncertainty. Time is represented as a continuous random variable. The dependency between state time variables is conveyed by a Bayesian network, which is dynamically generated by a state-based forward-chaining search based on the action descriptions. A generated plan is characterized by a probability of satisfying a goal. The evaluation of this probability is done by making a query the Bayesian network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.