Abstract
The extended boundary condition method can be used to study plane-wave scattering by an ellipsoid composed of an orthorhombic dielectric-magnetic material whose relative permittivity dyadic is a scalar multiple of its relative permeability dyadic. The scattered and internal field phasors can be expanded in terms of appropriate vector spherical wavefunctions with unknown expansion coefficients, whereas the incident-field phasors can be similarly expanded but with known expansion coefficients. The scattered-field coefficients are related to the incident-field coefficients through a matrix. The scattering, absorption, and extinction efficiencies were calculated thereby in relation to the propagation direction and the polarization state of the incident plane wave, the constitutive-anisotropy parameters, and the nonsphericity parameters of the ellipsoid, when the eigenvectors of the real permittivity dyadic are aligned along the three semi-axes of the ellipsoid. As the electrical size of the ellipsoid increases, multiple lobes appear in the scattering pattern. The total scattering efficiency can be smaller than the absorption efficiency for some configurations of the incident plane wave but not necessarily for others. The nonsphericity of the object has a stronger influence on the total scattering efficiency than on the absorption efficiency. The forward-scattering efficiency increases monotonically with the electrical size for all configurations of the incident plane wave, and so does the backscattering efficiency for some configurations. For other configurations, the backscattering efficiency has an undulating behavior with increase in electrical size and is highly affected by the shape and the constitutive anisotropy of the ellipsoid. Even though the ellipsoid is not necessarily a body of revolution, it is anisotropic, and it is not impedance matched to free space, the backscattering efficiency can be minuscule but the forward-scattering efficiency is not. This feature can be useful for harvesting electromagnetic energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.