Abstract
Observations of extrasolar planets reveal that planets can be found in close binary systems, where the semi-major axis of the binary orbit is less than 20 AU. The existence of these planets challenges planet formation theory, because the strong gravitational perturbations due to the companion increase encounter velocities between planetesimals and make it difficult for them to grow through accreting collisions. We study planetesimal encounter velocities in binary systems, where the planetesimals are embedded in a circumprimary gas disc that is allowed to evolve under influence of the gravitational perturbations of the companion star. We find that the encounter velocities between planetesimals of different size strongly depend on the gas disc eccentricity. In all cases studied, inclusion of the full gas dynamics increases the encounter velocity compared to the case of a static, circular gas disc. Full numerical parameter exploration is still impossible, but we derive analytical formulae to estimate encounter velocities between bodies of different sizes given the gas disc eccentricity. The gas dynamical evolution of a protoplanetary disc in a binary system tends to make planetesimal accretion even more difficult than in a static, axisymmetric gas disc.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have