Abstract

AbstractThe terrestrial planetary bodies display a wide variety of surface expressions and histories of volcanic and tectonic, and magnetic activity, even those planets with apparently similar dominant modes of heat transport (e.g., conductive on Mercury, the Moon, and Mars). Each body also experienced differentiation in its earliest evolution, which may have led to density‐stabilized layering in its mantle and a heterogenous distribution of heat‐producing elements (HPE). We explore the hypothesis that mantle structure exerts an important control on the occurrence and timing of geological processes such as volcanism and tectonism. We numerically investigate the behavior of an idealized model of a planetary body where HPE are assumed to be sequestered in a stabilized layer at the top or bottom of the mantle. We find that the mantle structure alters the patterns of heat flow at the boundaries of major heat reservoirs: The mantle and core. This modulates the way in which heat production influences geological processes. In the model, the mantle structure is a dominant control on the relative timing of fundamental processes such as volcanism, magnetic field generation, and expansion/contraction, the record of which may be observable on planetary body surfaces. We suggest that Mercury exhibits characteristics of shallow sequestration of HPE and that Mars exhibits characteristics of deep sequestration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.