Abstract

Young giant planets, which are embedded in a circumstellar disk, will significantly perturb the disk density distribution. This effect can potentially be used as an indirect tracer for planets. We investigate the feasibility of observing planet-induced gaps in circumstellar disks in scattered light. We perform 3D hydrodynamical disk simulations combined with subsequent radiative transfer calculations in scattered light for different star, disk, and planet configurations. The results are compared to those of a corresponding study for the (sub)mm thermal re-emission. The feasibility of detecting planet-induced gaps in scattered light is mainly influenced by the optical depth of the disk and therefore by the disk size and mass. Planet-induced gaps are in general only detectable if the photosphere of the disks is sufficiently disturbed. Within the limitations given by the parameter space here considered, we find that gap detection is possible in the case of disks with masses below $\sim 10^{-4\dots-3} \, \rm M_\odot$. Compared to the disk mass that marks the lower Atacama Large (Sub)Millimeter Array (ALMA) detection limit for the thermal radiation re-emitted by the disk, it is possible to detect the same gap both in re-emission and scattered light only in a narrow range of disk masses around $\sim 10^{-4} \, \rm M_\odot$, corresponding to $16\%$ of cases considered in our study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call