Abstract

Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Based on 3D hydrodynamic simulations of planet-disk interactions, we perform self-consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, 5 disk masses, 7 disk radii, and 2 different typical pre-main-sequence host stars (T Tauri, Herbig Ae). We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques in a total of 32 rotational transitions to investigate the frequency dependence of the structures indicated above. We find that the majority of protoplanetary disks in our parameter space could be detected in the molecular lines considered. However, unlike the continuum case, gap detection is not straightforward in lines. For example, gaps are not seen in symmetric rings but are masked by the pattern caused by the global (Keplerian) velocity field. We identify specific regions in the velocity-channel maps that are characteristic of planet-induced structures. Simulations of high angular resolution molecular line observations demonstrate the potential of ALMA to provide complementary information about the planet-disk interaction as compared to continuum observations. In particular, the detection of planet-induced gaps is possible under certain conditions.(abridged)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.