Abstract

In this paper, we report the development of fiber Bragg gratings (FBGs) arrays in polymer optical fibers (POFs), specifically cyclic transparent optical polymer (CYTOP) fibers, using a femtosecond (fs) laser. The CYTOP is almost transparent to near-ultraviolet and visible light, thus femtosecond lasers appear to be a very promising technology for the development of gratings in such fibers. Bearing this in mind, we have applied the direct write, plane-by-plane inscription method to obtain `single-peak' FBGs in long arrays. Following this, we examine the performance of a 5-FBG array applied in a smart walker (SW) and characterized for four different functionalities of the proposed healthcare device. The polymer sensors were used to analyze 1) structural health monitoring (SHM) of the SW's mechanical structure; 2) detection of users' movement intention; 3) gait cadence estimation; and 4) detection of floor-induced vibrations for localization and mapping applications. The good results obtained in comparison to commercially available devices show the suitability of the proposed FBG-array on the instrumentation of healthcare devices, where multiple parameters can be measured using the same fiber, which leads to a compact and energy efficient system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.