Abstract

We propose and demonstrate a fiber Bragg grating (FBG) array inscribed with femtosecond laser point-by-point (PbP) method for quasi-distributed high-temperature sensing. Via optimization of grating length, femtosecond laser energy and grating pitch, a wavelength-division-multiplexed (WDM) FBG array including nine FBGs with various Bragg wavelengths ranging from 1510 nm to 1590 nm and an identical ultra-weak FBG array including 60 FBGs with a peak reflectivity of ~0.1‰ were fabricated. After annealing at 700°C for nearly 200 hours, the FBG exhibited a an extremely low Bragg wavelength shift (i.e., -2 pm/h). In addition, the modulation of WDM FBG array was studied. A generalized calibration curve was applied to the FBG array and the maximum fitting error of 27 pm and the temperature measurement accuracy of ± 1.8°C were achieved. And then, the fabricated WDM FBG array was used to realize the quasi-distributed high-temperature sensing up to 700°C in the static and dynamic environment. Such WDM FBG array could be developed for quasi-distributed high-temperature sensing in metallurgical, chemical, and aviation industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.