Abstract

Planckian behavior has been recently observed in La1·76Sr0·24CuO4 at the pseudogap critical point. The Planckian behavior takes place in an intriguing quantum metallic state at a quantum critical point. Here, the Planckian behavior was simulated with an energy-independent (or flat) and weakly temperature-dependent electron-boson spectral density (EBSD) function by using a generalized Allen's (Shulga's) formula. We obtained various optical quantities from the flat EBSD function, such as the optical scattering rate, the optical effective mass, and the optical conductivity. These quantities are well fitted with the recently observed Planckian behavior. Fermi-liquid behavior was also simulated with an energy-linear and temperature-independent EBSD function. The EBSD functions agree well with the overall doping- and temperature-dependent trends of the EBSD function obtained from the optically measured spectra of cuprate systems, which can be crucial for understanding the microscopic electron-pairing mechanism for high-Tc superconductivity in cuprates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.