Abstract
We study the problem of transforming plane triangulations into irreducible triangulations, which are plane graphs with a quadrangular exterior face, triangular interior faces and no separating triangles. Our linear time transformation reveals important relations between the minimum Schnyder’s realizers of plane triangulations (Bonichon et al., Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 2607, pp. 499–510, Springer, Berlin, 2003; Research Report RR-1279-02, LaBRI, University of Bordeaux, France; Brehm, Diploma thesis, FB Mathematik und Informatik, Freie Universitat Berlin, 2000) and the transversal structures of irreducible triangulations (Fusy, Proceedings of 13th International Symposium on Graph Drawing, Lecture Notes in Computer Science, vol. 3843, pp. 177–188, Springer, Berlin, 2005; He, SIAM J. Comput. 22:1218–1226, 1993). The transformation morphs a 3-connected plane graph into an internally 4-connected plane graph. Therefore some of the graph algorithms designed specifically for 4-connected plane graphs can be applied to 3-connected plane graphs indirectly. As an example of such applications, we present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by W×H, where $W\leq\lfloor\frac{2n-2}{3}\rfloor$, and $W+H\leq\lfloor \frac{4n-4}{3}\rfloor$. It uses at most $\lfloor\frac{2n-5}{3}\rfloor$bends, and each edge uses at most one bend. Our algorithm is area optimal. Compared with the existing area optimal polyline drawing algorithm proposed in Bonichon et al. (Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 2573, pp. 35–46, Springer, Berlin, 2002), our algorithm uses a smaller number of bends. Their bend bound is (n−2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.