Abstract
The extracellular availability of growth factors, hormones, chemokines, and neurotransmitters under gradient conditions is required for directional cellular responses such as migration, axonal pathfinding, and tissue patterning. These responses are, in turn, important in disease and developmental processes. This article addresses critical barriers toward devising a chemotaxis assay that is broadly applicable for different kinds of cancer cells through the design of a microfluidic chamber that produces a steep gradient of chemoattractant. Photolithography was used to create microchannels for chemoattractant delivery, flow diversion barriers/conduits, and small outlets in the form of apertures. The 1- μm apertures were made at the active surface by uncapping a thin (1.5 μm) layer of AZ1518. This process also created a vertical conduit that diverted the flow such that it occurred perpendicularly to the active, experimental surface where the gradients were measured. The other side of the vertical conduit opened to underlying 20- μm deep channels that carried microfluidic flows of tracer dyes/growth factors. Modeled data using computational fluid dynamics produced gradients that were steep along the horizontal, active surface. This simulation mirrors empirically derived gradients obtained from the flow analyses of fluorescent compounds. The open chamber contains a large buffer volume, which prevents chemoattractant saturation and permits easy cell and compound manipulation. The technique obviates the use of membranes or laminar flow that may hinder imaging, rinsing steps, cell seeding, and treatment. The utility of the chamber in the study of cell protrusion, an early step during chemotaxis, was demonstrated by growing cancer cells in the chamber, inducing a chemoattractant gradient using compressed air at 0.7 bar, and performing time-lapse microscopy. Breast cancer cells responded to the rapidly developed and stable gradient of epidermal growth factor by directing centroid positions toward the gradient and by forming a leading edge at a speed of 0.45 μm/min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.