Abstract
We present measurements of ion velocity distribution profiles obtained by laser induced fluorescence (LIF) on an explosive laser produced plasma. The spatiotemporal evolution of the resulting carbon ion velocity distribution was mapped by scanning through the Doppler-shifted absorption wavelengths using a tunable, diode-pumped laser. The acquisition of these data was facilitated by the high repetition rate capability of the ablation laser (1Hz), which allowed for the accumulation of thousands of laser shots in short experimental times. By varying the intensity of the LIF beam, we were able to explore the effects of fluorescence power against the laser irradiance in the context of evaluating the saturation vs the non-saturation regime. The small size of the LIF beam led to high spatial resolution of the measurement compared to other ion velocity distribution measurement techniques, while the fast-gate operation mode of the camera detector enabled the measurement of the relevant electron transitions.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have