Abstract

Observation of Weyl and Dirac Fermions in condensed matter systems is one of the most important discoveries. Among the very few available tools to characterize Weyl semimetals through electrical transport, negative magnetoresistance is most commonly used. Considering shortcomings of this method, new tools to characterize chiral anomaly in Weyl semimetals are desirable. We employ planar Hall effect as an effective technique in half Heusler Weyl semimetal GdPtBi to study chiral anomaly. This compound exhibits a large value of 1.5 mohm cm planar Hall resistivity at 2 K and in 9 T. Our analysis reveals that the observed amplitude is dominated by Berry curvature and chiral anomaly contributions. Through the angle dependent transport studies we establish that GdPtBi with relatively small orbital magnetoresistance is an ideal candidate to observe large planar Hall effect .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.