Abstract
The low Coulombic efficiency and limited cycle life of zinc (Zn) metal anode resulting from the severe side reactions and dendrite growth are the major bottlenecks restricting the commercial applications of the rechargeable aqueous Zn metal batteries (ZMBs). Considering that the crystal orientation of the electrode surface determines the growth direction of the newly deposited metal, however, limited by the crystal heterogeneity of commercial Zn foil, it can easily lead to inhomogeneous deposition morphology. Therefore, Zn electrode with more exposed (002) plane is considered as an effective strategy for planar and dendrite-free Zn deposition. In this review, we first provide the advantages of the preferred Zn (002) plane for achieving flat Zn deposition and elucidate the effect of electrode surface crystal orientation on Zn metal deposition behavior by correlating crystallography and deposition morphology. Then, we summarize the recent progress in the design and optimization strategies for directional deposition of Zn metal along the (002) orientation. Finally, the challenges, potential solutions, and perspectives for further exploration of planar and dendrite-free Zn deposition are proposed, which are expected to spur more insightful works toward advanced aqueous ZMBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have