Abstract

Abrasive water jet (AWJ) milling process, though being an effective alternative to conventional machining for difficult-to-machine materials, induces abrasive embedment which is an issue for repair application by structural bonding. In this context, the effectiveness of cleaning Ti6Al4V specimens by Plain Water Jet (PWJ) post AWJ milling is studied. For this, Ti6Al4V specimens are milled by AWJ process with varying parameters to create several levels of surface quality and contamination. Different characterization techniques have been used to perform a multi-scale analysis of the machined surfaces and surface quality has been quantified by an innovative criterion called “crater volume” (Cv). Then the specimens are subjected to PWJ cleaning operation (using a single set of parameters chosen after preliminary study). Finally, surface texture analysis and contamination quantification is performed and compared with the AWJ milled surfaces. The results revealed that PWJ cleaning reduced the surface contamination by 65% without any significant change in Cv, surface texture and topology. However, it was found that it was impossible to dislodge deeply embedded particles. The comparison of pre and post-cleaning contamination levels also revealed that PWJ cleaning process efficiency depends on the AWJ milling parameters (mainly pressure).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.