Abstract
Tight junctions (TJs) form continuous intercellular contacts controlling the paracellular transportation across the cell-to-cell junction. TJ components include the peripheral protein zonula occludens-1 (ZO-1), junctional adhesion molecules (JAMs), and integral proteins such as occludin and claudins. Among the junction proteins, claudins play a major role in regulation of paracellular electrolyte transportation. This study explores the expression and distribution of tight junctions and their regulation during pregnancy. To study the regulation of claudin family, we examined expression of mouse placental tight junction proteins, including claudin-1 to -24, with real-time PCR and Western blotting and distribution of tight junction proteins with immunohistochemistry. Pregnant C57/BL6 mice were used in this study. The pregnant mice were divided into three groups depending on pregnant day (on days 12, 16, and 20 of gestation). Regarding the transcription levels, claudin-1, claudin-2, claudin-4, and claudin-5 expression levels were relatively high compared to other claudin family in all periods of pregnancy. Claudin-4 and 5 expressions, which reduce ion permeability, were increased over a period of time. However, claudin-2 expression, that is the responsive protein for a decrease in paracellular conductance, was decreased. Following this modulation of expression during mid-term pregnancy, we identified endogenous hormonal modulation of claudin family using estrogen receptor antagonist ICI 182,780 and progesterone receptor antagonist RU-486. After administration of ICI and RU-486, expression of claudin-4 mRNA and protein was increased. In addition, immunohistochemistry was performed to identify their localization for inferring permeability in placenta. Due to the function of claudins as effectors of ion transport at the end of regulatory pathways, they must be transducing proteins that modulate the function of claudins and thus link the physiologic inputs to the final effectors. This study will provide the claudin expressions and their localization in the mouse placenta, and their regulation by endogenous hormones. Taken together, the results of this study may contribute to assuming the roles and regulatory mechanism of these tight junction genes regarding maternal-fetal ion transportation in the placenta.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have