Abstract
The authors formalize the problem of minimizing the length of the longest interprocessor wire as the problem of embedding the processors of a hypercube onto a rectangular mesh, so as to minimize the length of longest wire. Where neighboring nodes of the mesh are taken as being at unit distance from one another, and where wires are constrained to be laid out as horizontal and vertical wires, the length of the wire joining nodes u and v of the mesh equals the graph-theoretic distance between u and v. The problem of minimizing delays due to interprocessor communication is then modeled as the problem of embedding the vertices of a hypercube onto the nodes of a mesh, so as to minimize dilation. Two embeddings which achieve dilations that (for large n) are within 26% of the lower bound for square meshes and within 12% for meshes with aspect ratio 2 are presented. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.