Abstract

Protein remote homology detection is a fundamental and important task for protein structure and function analysis. Several search methods have been proposed to improve the detection performance of the remote homologues and the accuracy of ranking lists. The position-specific scoring matrix (PSSM) profile and hidden Markov model (HMM) profile can contribute to improving the performance of the state-of-the-art search methods. In this paper, we improved the profile-link (PL) information for constructing PSSM or HMM profiles, and proposed a PL-based search method (PL-search). In PL-search, more robust PLs are constructed through the double-link and iterative extending strategies, and an accurate similarity score of sequence pairs is calculated from the two-level Jaccard distance for remote homologues. We tested our method on two widely used benchmark datasets. Our results show that whether HHblits, JackHMMER or position-specific iterated-BLAST is used, PL-search obviously improves the search performance in terms of ranking quality as well as the number of detected remote homologues. For ease of use of PL-search, both its stand-alone tool and the web server are constructed, which can be accessed at http://bliulab.net/PL-search/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.