Abstract
Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of neuroscience : the official journal of the Society for Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.