Abstract

Endothelin-1 (ET-1) is a potent endogenously derived vasoconstrictor, which increases pulmonary hypertension via stimulation of [Ca2+]i level in pulmonary artery smooth muscle cells (PASMCs). In this communication, we sought to investigate the mechanism by which ET-1 causes stimulation of Ca2+ concentration in caveolae vesicles of bovine PASMCs (BPASMCs). ET-1 activates PKC-α in the caveolae vesicles by O2.- derived from PKCζ-NADPH oxidase dependent pathway. PKC-α phosphorylates Kv1.5 channels leading to a marked stimulation of Na+ and Ca2+ concentration in the caveolae vesicles. The stimulation of Ca2+ concentration in the caveolae vesicles by ET-1 occurs predominantly via Cav1.2 channels. Additionally, an increase in Na+ concentration by ET-1 due to stimulation of Nav1.5 channels marginally increases Ca2+ level in the caveolae vesicles via reverse-mode Na+/Ca2+ exchanger (NCX-1) and also through "slip-mode conductance" Nav1.5 channels. 4-AP, a well-known inhibitor of Kv channels, also increases Ca2+ concentration in the caveolae vesicles via Cav1.2 channels, reverse-mode NCX-1 and Nav1.5 channels by phosphorylation independent modulation of Kv1.5 channels without the involvement of PKCζ-NADPH oxidase-PKCα signaling axis. Overall, PKCζ-NADPH oxidase-PKCα dependent phosphorylation of Kv1.5 by ET-1 modulates Nav1.5-NCX1-Cav1.2 axis for stimulation of Ca2+ concentration in caveolae vesicles of BPASMCs, which provides a crucial mechanism for better understanding of ET-1-mediated modulation of pulmonary vascular tone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call