Abstract

The signalling pathway involving MMP-2 and sphingosine-1-phosphate (S1P) in endothelin-1 (ET-1) induced pulmonary artery smooth muscle cell (PASMC) proliferation is not clearly known. We, therefore, investigated the role of NADPH oxidase derived O2.--mediated modulation of MMP2-sphingomyeline-ceramide-S1P signalling axis in ET-1 induced increase in proliferation of PASMCs. Additionally, protective role of the tea cathechin, epigallocatechin-3-gallate (EGCG), if any, in this scenario has also been explored. ET-1 markedly increased NADPH oxidase and MMP-2 activities and proliferation of bovine pulmonary artery smooth muscle cells (BPASMCs). ET-1 also caused significant increase in sphingomyelinase (SMase) activity, ERK1/2 and sphingosine kinase (SPHK) phosphorylations, and S1P level in the cells. EGCG inhibited ET-1 induced increase in SMase activity, ERK1/2 and SPHK phosphorylations, S1P level and the SMC proliferation. EGCG also attenuated ET-1 induced activation of MMP-2 by inhibiting NADPH oxidase activity upon inhibiting the association of the NADPH oxidase components, p47phox and p67phox in the cell membrane. Molecular docking study revealed a marked binding affinity of p47phox with the galloyl group of EGCG. Overall, our study suggest that ET-1 induced proliferation of the PASMCs occurs via NADPH oxidase-MMP2- Spm- Cer-S1P signalling axis, and EGCG attenuates ET-1 induced increase in proliferation of the cells by inhibiting NADPH oxidase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.