Abstract

Dynamic contrast enhanced (DCE) MRI is a widespread method that has found broad application in the imaging of the musculoskeletal (MSK) system. A common way of analyzing DCE MRI images is to look at the shape of the time-intensity curve (TIC) in pixels selected after drawing an ROI in a highly enhanced area. Although often applied to a number of MSK affections, shape analysis has so far not led to a unanimous correlation between these TIC patterns and pathology. We hypothesize that this might be a result of the subjective ROI approach. To overcome the shortcomings of the ROI approach (sampling error and interuser variability, among others), we created a method for a fast and simple classification of DCE MRI where time-curve enhancement shapes are classified pixel by pixel according to their shape. The result of the analysis is rendered in multislice, 2D color-coded images. With this approach, we show not only that differences on a short distance range of the TIC patterns are significant and cannot be appreciated with a conventional ROI analysis but also that the information that shape maps and conventional standard DCE MRI parameter maps convey are substantially different.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call