Abstract

New technologies have shown that most of the genome comprises transcripts that cannot code for proteins and are referred to as non-coding RNAs (ncRNAs). Some ncRNAs, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are of substantial interest because of their critical function in controlling genes and numerous biological activities. The expression levelsand function of miRNAs and lncRNAs are rigorously monitored throughout developmental processes and the maintenance of physiological homeostasis. Due to their critical roles, any dysregulation or changes in their expression can significantly influence the pathogenesis of various human diseases. The interactions between miRNAs and lncRNAs have been found to influence gene expression in various ways. These interactions significantly influence the understanding of disease etiology, cellular processes, and potential therapeutic targets. Different experimental and in silico methods can be used to investigate miRNA-lncRNA interactions. By aiding the elucidation of miRNA-lncRNA interactions and deepening the understanding of post-transcriptional gene regulation, researchers can open a new window for designing hypotheses, conducting experiments, and discovering methods for diagnosing and treating complex human diseases. This review briefly summarizes miRNA and lncRNA functions, discusses their interaction mechanisms, and examines the experimental and computational methods used to study these interactions. Additionally, we highlight significant studies on lncRNA and miRNA interactions in various diseases from 2000 to 2024, using the academic research databases such as PubMed, Google Scholar, ScienceDirect, and Scopus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.