Abstract
BackgroundAs the only arterial structure of which two main arteries merged into one, the vertebro-basilar (VA-BA) system is one of the favorite sites of cerebral atherosclerotic plaques. The aim of this study was to investigate the detailed hemodynamics characteristics in the VA-BA system.MethodsA scale-up subject-specific flow phantom of VA-BA system was fabricated based on the computed tomography angiography (CTA) scanning images of a healthy adult. Flow fields in eight axial planes and six radial planes were measured and analyzed by using particle image velocimetry (PIV) under steady flow conditions of {Re}=300, {Re}=500. A water–glycerin mixture was used as the working fluid.ResultsThe flow in the current model exhibited highly three-dimensional characteristics. The confluence of VAs flow formed bimodal velocity distribution near the confluence apex. Due to the asymmetrical structural configuration, the bimodal velocity profile skewed towards left, and sharper peaks were observed under higher Reynolds condition. Secondary flow characterized by two vortices formed in the radial planes where 10 mm downstream the confluence apex and persists along the BA under both Reynolds numbers. The strength of secondary flow under {Re}=500 is around 8% higher than that under {Re}=300, and decayed nonlinearly along the flow direction. In addition, a low momentum recirculation region induced by boundary layer separation was observed near the confluence apex. The wall shear stress (WSS) in the recirculation area was found to be lower than 0.4 Pa. This region coincides well with the preferential site of vascular lesions in the VA-BA system.ConclusionsThis preliminary study verified that the subject-specific in-vitro experiment is capable of reflecting the detailed flow features in the VA-BA system. The findings from this study may help to expand the understanding of the hemodynamics in the VA-BA system, and further clarifying the mechanism that underlying the localization of vascular lesions.
Highlights
The vertebro-basilar (VA-basilar artery (BA)) system is the only arterial structure in human that two large arteries merge into one, in which the : vertebral artery (VA) are arising from the subclavian arteries and join into BA
This study aims to investigate the detailed hemodynamics characteristics in the VA-BA system
A triangle shaped flow stagnation region was found at the confluence apex, where the flow velocity magnitude is below 0.05 m/s
Summary
The vertebro-basilar (VA-BA) system is the only arterial structure in human that two large arteries merge into one, in which the VAs are arising from the subclavian arteries and join into BA. It provides a critical cerebral blood supply path that feeding the posterior circulation of the circle of Willis under normal conditions, and responsible for supplying compensational blood flow to anterior circulation when anatomical or pathological variations occurred [1,2,3]. As the only arterial structure of which two main arteries merged into one, the vertebro-basilar (VA-BA) system is one of the favorite sites of cerebral atherosclerotic plaques. The aim of this study was to investigate the detailed hemodynamics characteristics in the VA-BA system
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have