Abstract
PurposeTo constitute input data, the authors carried out electrochemical experiments. The authors performed voltammetric scans in a very cathodic potential region. The authors constituted an experimental table where for each experiment we note the current values recorded at a low polarization range and the pitting potential observed in the anodic region. This study aims to concern carbon steel used in a nuclear installation. The properties of the chemical solutions are close to that of the cooling fluid used in the circuit.Design/methodology/approachIn a previous study, this paper demonstrated the effectiveness of machine learning in predicting the localized corrosion resistance of a material by considering as input data the physicochemical properties of its environment (Boucherit et al., 2019). With the present study, the authors improve the results by considering as input data, cathodic currents. The reason of such an approach is to have input data that integrate both the surface state of the material and the physicochemical properties of its environment.FindingsThe experimental table was submitted to two neural networks, namely, a recurrent network and a convolution network. The convolution network gives better pitting potential predictions. Results also prove that the prediction by observing cathodic currents is better than that obtained by considering the physicochemical properties of the solution.Originality/valueThe originality of the study lies in the use of cathodic currents as input data. These data contain implicit information on both the chemical environment of the material and its surface condition. This approach appears to be more efficient than considering the chemical composition of the solution as input data. The objective of this study remains, at the same time, to seek the optimal neuronal architectures and the best input data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.