Abstract
We provide an analytic expression for the variance of ratio of integral functionals of fractional Brownian motion which arises as an asymptotic variance of Pitman estimators for a location parameter of independent identically distributed observations. The expression is obtained in terms of derivatives of a logarithmic moment of the integral functional of limit likelihood ratio process (LLRP). In the particular case when the LLRP is a geometric Brownian motion, we show that the established expression leads to the known representation of the asymptotic variance of Pitman estimator in terms of Riemann zeta-function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have