Abstract
In this paper, we present a novel, high throughput field-programmable gate array (FPGA) architecture, PITIA, which combines the high-performance of application specific integrated circuits (ASICs) and the flexibility afforded by the reconfigurability of FPGAs. The new architecture, which targets datapath circuits, uses the concepts of wave steering and pipelined interconnects. We discuss the FPGA architecture and show results for performance, power consumption, clock network performance, and routability. Results for some commonly used datapath designs are encouraging with throughputs in the neighborhood of 625MHz in 0.25-/spl mu/m 2.5-V CMOS technology. Results for random benchmark circuits are also shown. We characterize designs according to their Rent's exponents and argue that designs with predominantly local interconnects are the best fit in PITIA. We also show that as technology scales down toward deep submicron, PITIA shows an increasing throughput performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.