Abstract

Medical image fusion is the process of deriving vital information from multimodality medical images. Some important applications of image fusion are medical imaging, remote control sensing, personal computer vision and robotics. For medical diagnosis, computerized tomography (CT) gives the best information about denser tissue with a lesser amount of distortion and magnetic resonance image (MRI) gives the better information on soft tissue with little higher distortion. The main scheme is to combine CT and MRI images for getting most significant information. The need is to focus on less power consumption and less occupational area in the implementations of the applications involving image fusion using discrete wavelet transform (DWT). To design the DWT processor with low power and area, a low power multiplier and shifter are incorporated in the hardware. This low power DWT improves the spatial resolution of fused image and also preserve the color appearance. Also, the adaptation of the lifting scheme in the 2D DWT process further improves the power reduction. In order to implement this 2D DWT processor in field-programmable gate array (FPGA) architecture as a very large scale integration (VLSI)-based design, the process is simulated with Xilinx 14.1 tools and also using MATLAB. When comparing the performance of this low power DWT and other available methods, this high performance processor has 24%, 54% and 53% of improvements on the parameters like standard deviation (SD), root mean square error (RMSE) and entropy. Thus, we are obtaining a low power, low area and good performance FPGA architecture suited for VLSI, for extracting the needed information from multimodality medical images with image fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.