Abstract

Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls that need to be considered during their implementation and interpretation of the results. Hence, the present study aimed at drawing attention to the risks of erroneous conclusions incurred by confounding variables illustrated by a case example predicting executive function performance by prosodic features. Healthy participants (n = 231) performed speech tasks and EF tests. From 264 prosodic features, we predicted EF performance using 66 variables, controlling for confounding effects of age, sex, and education. A reasonable model fit was apparently achieved for EF variables of the Trail Making Test. However, in-depth analyses revealed indications of confound leakage, leading to inflated prediction accuracies, due to a strong relationship between confounds and targets. These findings highlight the need to control confounding variables in ML pipelines and caution against potential pitfalls in ML predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.