Abstract
Spatial transcriptomics has allowed researchers to analyze transcriptome data in its tissue sample's spatial context. Various methods have been developed for detecting spatially variable genes (SV genes), whose gene expression over the tissue space shows strong spatial autocorrelation. Such genes are often used to define clusters in cells or spots downstream. However, highly variable (HV) genes, whose quantitative gene expressions show significant variation from cell to cell, are conventionally used in clustering analyses. In this report, we investigate whether adding highly variable genes to spatially variable genes can improve the cell type clustering performance in spatial transcriptomics data. We tested the clustering performance of HV genes, SV genes, and the union of both gene sets (concatenation) on over 50 real spatial transcriptomics datasets across multiple platforms, using a variety of spatial and non-spatial metrics. Our results show that combining HV genes and SV genes can improve overall cell-type clustering performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.