Abstract

In situpowder X-ray diffraction (PXRD) is a powerful characterization tool owing to its ability to provide time-resolved information about phase composition, crystal structure and microstructure. The application of high-flux synchrotron X-ray beams and the development of custom-built reactors have facilitated second-scale time-resolved studies of nanocrystallite formation and growth during solvothermal synthesis. The short exposure times required for good time resolution limit the data quality, while the employed high-temperature–high-pressure reactors further complicate data acquisition and treatment. Based on experience gathered during ten years of conductingin situstudies of solvothermal reactions at a number of different synchrotrons, a compilation of useful advice for conductingin situPXRD experiments and data treatment is presented here. In addition, the reproducibility of the employed portablein situPXRD setup, experimental procedure and data analysis is evaluated. This evaluation is based on repeated measurements of an LaB6line-profile standard throughout 5 d of beamtime and on the repetition of ten identicalin situsynchrotron PXRD experiments on the hydrothermal formation of γ-Fe2O3nanocrystallites. The study reveals inconsistencies in the absolute structural and microstructural values extracted by Rietveld refinement and whole powder pattern modelling of thein situPXRD data, but also illustrates the robustness of trends and relative changes in the extracted parameters. From the data, estimates of the effective errors and reproducibility ofin situPXRD studies of solvothermal nanocrystallite formation are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call