Abstract
Good parameter settings are crucial to achieve high performance in many areas of artificial intelligence (AI), such as propositional satisfiability solving, AI planning, scheduling, and machine learning (in particular deep learning). Automated algorithm configuration methods have recently received much attention in the AI community since they replace tedious, irreproducible and error-prone manual parameter tuning and can lead to new state-of-the-art performance. However, practical applications of algorithm configuration are prone to several (often subtle) pitfalls in the experimental design that can render the procedure ineffective. We identify several common issues and propose best practices for avoiding them. As one possibility for automatically handling as many of these as possible, we also propose a tool called GenericWrapper4AC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.