Abstract

A melodic pitch experiment was performed to demonstrate the importance of time-interval resolution for pitch strength. The experiments show that notes with a low fundamental (75 Hz) and relatively few resolved harmonics support better performance than comparable notes with a higher fundamental (300 Hz) and more resolved harmonics. Two four note melodies were presented to listeners and one note in the second melody was changed by one or two semitones. Listeners were required to identify the note that changed. There were three orthogonal stimulus dimensions: F0 (75 and 300 Hz); lowest frequency component (3, 7, 11, or 15); and number of harmonics (4 or 8). Performance decreased as the frequency of the lowest component increased for both F0's, but performance was better for the lower F0. The spectral and temporal information in the stimuli were compared using a time-domain model of auditory perception. It is argued that the distribution of time intervals in the auditory nerve can explain the decrease in performance as F0, and spectral resolution increase. Excitation patterns based on the same time-interval information do not contain sufficient resolution to explain listener's performance on the melody task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.