Abstract

In judging the pitch of harmonic tone complexes, it is well known that lower-order harmonics (harmonic numbers less than about 10) produce a more salient (and accurate) pitch percept than higher-order harmonics, with a fairly sharp transition between the two regions (Houtsma and Smurzynski 1990). This difference has been explained in terms of whether or not the individual harmonics are peripherally resolved (e.g., Shackleton and Carlyon 1994). It is widely believed that the pitch of complexes containing resolved harmonics is derived from their individual frequencies, whereas the pitch of complexes containing only high harmonics is derived from the envelope repetition rate of the complex waveform produced when unresolved harmonics interact in the auditory periphery. While this is an appealing framework, which can be made to cover a wide range of pitch phenomena, some questions remain. The two questions addressed in this paper are: (1) Can harmonics that are not normally resolved contribute to the overall pitch if they are presented in a resolved manner, and (2) is there any evidence that the pitches produced by resolved and unresolved harmonics require some internal “translation” before they can be compared?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.