Abstract

Abstract Accurately calculating snow-surface temperature and liquid water content for a groomed ski run, known as a ski piste, is crucial to the preparation of fast skis for alpine racing. Ski technicians can use forecasts of these variables to reduce ski–snow friction by applying layers of wax ahead of time. A new one-dimensional numerical Lagrangian snowpack model, Prognostic Implementation for Snow Temperature Estimation (PISTE), is presented that solves the heat-, liquid water–, and ice-budget equations to calculate these snow variables. In addition, the human effects of skiing and grooming are modeled. Meteorological measurements from a 5-day, clear-sky case study at a ski piste on Whistler Mountain, British Columbia, Canada, are prescribed to PISTE as boundary conditions. Because of a lack of interior snowpack measurements, PISTE was spun up from a dry, isothermal snowpack using repeated boundary conditions from 1 day of measurements. Initial conditions for the main model run that used the subsequent 4 days were taken from this spinup. Simulated and measured snow-surface temperatures show very good agreement, with slight cold daytime and warm nighttime biases (averaging 0.5° and 1°C, respectively). The modeled behavior of snowpack temperature and liquid water content profiles is consistent with previous literature having similar radiative boundary conditions. The case study indicates that PISTE is useful under simple conditions. It shows the potential to be developed into a more sophisticated model that can incorporate complex boundary conditions such as cloudiness and precipitation and can be driven by numerical weather prediction output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.