Abstract
ObjectiveOsteoarthritis (OA) is a prevalent chronic degenerative joint ailment. Its primary pathological characteristics encompass degeneration of articular cartilage, inflammation of the synovium, and alterations in the subchondral bone proximate to the cartilage. Chondrocytes, as the sole cell type within articular cartilage, assume a crucial role in upholding the dynamic equilibrium between anabolic and catabolic processes within the extracellular matrix of articular cartilage. IL-1β stands as a pivotal inflammatory factor that instigates cartilage degeneration. piRNA, categorized as a subset of brief non-coding RNAs spanning nucleotide lengths of 26-31nt, assumes a significant regulatory role in cellular function. MethodsSmall RNA sequencing and quantitative PCR (qPCR) were employed to investigate the impact of the inflammatory factor IL-1β on piRNA expression within chondrocytes. The regulation of mmu_piR_037459 expression in chondrocytes was achieved using piRNA mimics and inhibitors. Additionally, collagen II expression was assessed through both qPCR and Western blot analysis. Chondrocyte apoptosis was evaluated via flow cytometry and clonogenesis assays. To assess the influence of mmu_piR_037459 on osteoarthritis, a mouse model of anterior cruciate ligament transection (ACLT) was established. Furthermore, the regulatory effect of mmu_piR_037459 on USP7 was investigated using bioinformatics and a luciferase reporter gene assay. Resultsmmu_piR_037459 inhibited the expression of collagen II in chondrocytes, inhibited the proliferation of chondrocytes, and promoted the apoptosis of chondrocytes. mmu_piR_037459 affected the function of chondrocytes by regulating the expression of USP7. Inhibition of mmu_piR_037459 expression could promote chondrocyte proliferation, inhibit chondrocyte apoptosis, and alleviate the degeneration of OA cartilage. ConclusionsThis study suggests that mmu_piR_037459 maybe a new therapeutic targets and strategies for the treatment of OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.