Abstract

Molecularly imprinted polymers (MIPs) were synthesized and used as sorbent for Bisphenol A (BPA) pipette tip solid-phase microextraction from urine samples and BPA analysis by gas chromatography coupled to mass spectrometry (GC-MS). The MIPs were synthesized by the sol-gel methodology. Aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) were used as functional monomer and cross-linking reagent, respectively. BPA and tetrabromobisphenol A (TBBPA) were evaluated as template during MIP synthesis. The BPA-based MIP displayed slightly higher extraction efficiency than the TBBPA-based dummy molecularly imprinted polymer (DMIP), but the TBBPA-based DMIP was selected as sorbent to minimize interference from leaked template. Comparison of the TBBPA-based DMIP, BPA-based MIP, and non-imprinted polymer (NIP) extraction efficiencies attested that the TBBPA-based DMIP was selective. The synthesized polymers were characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR). The TBBPA-based DMIP was reused for over 100 times, which confirmed its robustness. The developed method was linear from 50 to 500ngmL-1. Precision values had coefficient of variation (CV) ranging from 4 to 14%. The accuracy relative standard deviation values (RSD) varied from -13.6 to 12.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.