Abstract

A pipeline is a popular architecture which connects computational components (filters) through connectors (pipes) so that computations are performed in a stream like fashion. The data are transported through the pipes between filters, gradually transforming inputs to outputs. This kind of stream processing has been made popular through UNIX pipes that serially connect independent components for performing a sequence of tasks. We show in this paper how to formalize this architecture in terms of monads, hereby including relational specifications as special cases. The system is given through a directed acyclic graph the nodes of which carry the computational structure by being labelled with morphisms from the monad, and the edges provide the data for these operations. It is shown how fundamental compositional operations like combining pipes and filters, and refining a system by replacing simple parts through more elaborate ones, are supported through this construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.