Abstract

Congruence closure is a fundamental operation for symbolic computation. Unification closureis defined as its directional dual, i.e., on the same inputs but top-down as opposed to bottom-up. Unifying terms is another fundamental operation for symbolic computation and is commonly computed using unification closure. We clarify the directional duality by reducing unification closure to a special form of congruence closure. This reduction reveals a correspondence between repeated variables in terms to be unified and equalities of monadic ground terms. We then show that: (1) single equality congruence closure on a directed acyclic graph, and (2) acyclic congruence closure of a fixed number of equalities, are in the parallel complexity class NC. The directional dual unification closures in these two cases are known to be log-space complete for PTIME. As a consequence of our reductions we show that if the number of repeated variables in the input terms is fixed, then term unification can be performed in NC; this extends the known parallelizable cases of term unification. Using parallel complexity we also clarify the relationship of unification closure and the testing of deterministic finite automata for equivalence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call