Abstract
In this article, we present our novel pipeline for analysis of metabolic activity using a microbial community's metatranscriptome sequence data set for validation. Our method is based on expectation-maximization (EM) algorithm and provides enzyme expression and pathway activity levels. Further expanding our analysis, we consider individual enzymatic activity and compute enzyme participation coefficients to approximate the metabolic pathway activity more accurately. We apply our EM pathways pipeline to a metatranscriptomic data set of a plankton community from surface waters of the Northern Gulf of Mexico. The data set consists of RNA-seq data and respective environmental parameters, which were sampled at two depths, six times a day over multiple 24-hour cycles. Furthermore, we discuss microbial dependence on day-night cycle within our findings based on a three-way correlation of the enzyme expression during antipodal times-midnight and noon. We show that the enzyme participation levels strongly affect the metabolic activity estimates: that is, marginal and multiple linear regression of enzymatic and metabolic pathway activity correlated significantly with the recorded environmental parameters. Our analysis statistically validates that EM-based methods produce meaningful results, as our method confirms statistically significant dependence of metabolic pathway activity on the environmental parameters, such as salinity, temperature, brightness, and a few others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.