Abstract
Metatranscriptome sequence data analysis is necessary for understanding biochemical changes in the microbial community and their effects. In this paper, we propose a methodology to estimate activities of individual metabolic pathways to better understand the activity of the entire metabolic network. Our novel pipeline includes an expectation-maximization based estimation of enzyme expression and simultaneous estimation of pathway activity level and enzyme participation level in each pathway. We applied our novel pipeline to metatranscriptome data generated from surface water planktonic communities sampled over a day-night cycle in the Northern Gulf of Mexico (Louisiana Shelf). Our results show the estimated enzyme expression, pathway activity levels as well as enzyme participation levels in each pathway are robust and stable across all data points. In contrast to expression of enzymes, the estimated activity levels of significant number of metabolic pathways strongly correlate with the environmental parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.