Abstract

Hybrid perovskites have great potential in photovoltaics and photodetection. Specially, two-dimensional (2D) hybrid perovskites have been discovered to show distinctive applications in polarization-sensitive photodetection due to their intrinsic anisotropy. Herein, we designed a new type of 2D perovskite by introducing bifunctional alkylammonium as an organic spacer, (β-Ala)4PbBr4 (1, where β-Ala+ is 3-aminopropanoic), which has four organic spacers in adjacent inorganic layers and adjacent organic layers are linked by hydrogen bonding. The pioneering structure with four organic spacers enables an intrinsic high strong anisotropy, facilitating polarization-sensitive detection. The analysis of the crystal structure and optical properties further elucidates the natural anisotropic properties of 1. Strikingly, 1 has a strong optical dichroism (αc/αb ≈ 7.4 in 405 nm), and the polarization-sensitive detector on single crystals of 1 exhibits a large polarization ratio (Imax/Imin ≈ 2.0). This result highlights that the employment of bifunctional cations is efficient to explore new type 2D perovskites for potentially high-performance polarization-sensitive detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.