Abstract

Two-dimensional (2D) organic-inorganic hybrid perovskites have been intensively explored in recent years due to their tunable band gaps and exciton binding energies and increased stability with respect to three-dimensional (3D) hybrid perovskites. Experimental observations suggest the existence of localized edge states in 2D hybrid perovskites which facilitate extremely efficient electron-hole dissociation and long carrier lifetimes, while multiple origins for their formation have been proposed. Using first-principles calculations, we demonstrate that layer edge states are stabilized by internal electric fields created by polarized molecular alignment of organic cations in 2D hybrid perovskites when they are two layers or thicker. Our study gives a simple physical explanation of the edge state formation, and facilitating the design and manipulation of layer edge states for optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.