Abstract

Difluorinated polycyclic aromatic hydrocarbons (PAHs) containing three to five benzene rings were systematically synthesized by the Pd(II)-catalyzed Friedel–Crafts-type cyclization of 1,1,2-trifluoro- and 1,1-difluoro-1-alkenes and the In(III)-catalyzed tandem cyclization of bis(1,1-difluoroallene)s. Using an array of the difluorinated PAHs that were obtained and previously reported monofluorinated PAHs, the physical properties of the pinpoint-fluorinated PAHs were investigated. (i) The 19F NMR signals of the bay-region fluorine atoms were shifted downfield by ca. 8–14ppm for vic-difluorinated PAHs and ca. 11–19ppm for non-vic-difluorinated and monofluorinated PAHs. (ii) The introduction of fluorine into PAH molecules increased their solubilities in organic solvents, which was best exemplified by the high solubilities of 6,7-difluoropicene (5.4wt%) and 6-fluoropicene (5.3wt%) in THF. (iii) The HOMO–LUMO energy gaps of the pinpoint-fluorinated PAHs were smaller than that of the corresponding fluorine-free PAH (i.e., picene) by 0.02–0.26eV, and the HOMO and LUMO energy levels were lowered by 0.10–0.22eV and 0.12–0.41eV, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.