Abstract
Three new n-type copolymers were synthesized using the isoindigo monomer. 5-Octylthieno[3,4-c]pyrrole-4,6-dione (TPD), 5,5′-dioctyl-1,1′-4H-bithieno[3,4-c]pyrrole-4,4′,6,6′(5H,5′H)-tetrone (BTPD) and 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) were utilized as electron-withdrawing comonomers to obtain reduced or low bandgap n-type copolymers with deep HOMO and LUMO energy levels. The TPD and BTPD copolymers were synthesized using direct arylation polymerization and show bandgaps of 1.72 and 1.75 eV, respectively. Their LUMO and HOMO energy levels are also low at −4.2 and −6.0 eV, respectively. We investigated their electron mobility using thin film transistors and achieved electron mobility as high as 3.0 × 10−4 and 3.5 × 10−3 cm2 s−1 V−1 for the TPD and BTPD copolymers. The DPP copolymer was synthesized using Suzuki conditions and shows a low bandgap of 1.35 eV and a low LUMO energy level of −4.0 eV. The DPP copolymer exhibits an electron mobility of 2.7 × 10−4 cm2 s−1 V−1. All these polymers show interesting properties as potential electron acceptors in all-polymer solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.